Abstract
Many common finite p-groups admit automorphisms of order coprime to p, and when p is odd, it is reasonably difficult to find finite p-groups whose automorphism group is a p-group. Yet the goal of this paper is to prove that the automorphism group of a finite p-group is almost always a p-group. The asymptotics in our theorem involve fixing any two of the following parameters and letting the third go to infinity: the lower p-length, the number of generators, and p. The proof of this theorem depends on a variety of topics: counting subgroups of a p-group; analyzing the lower p-series of a free group via its connection with the free Lie algebra; counting submodules of a module via Hall polynomials; and using numerical estimates on Gaussian coefficients.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.