Abstract
Let G be a group and ZG be the integral group ring of G. We shall write 𝔤 for the augmentation ideal of G; that is to say, the kernel of the homomorphism of ZG onto Z which sends each group element to 1. The powers gλ of 𝔤 are defined inductively for ordinals λ by 𝔤λ = 𝔤μ𝔤, if λ = μ + 1, and otherwise. The first ordinal λ for which gλ = 𝔤λ+1 is called the augmentation terminal or simply the terminal of G. For example, if G is either a cyclic group of prime order or else isomorphic with the additive group of rational numbers then gn > 𝔤ω = 0 for all finite n, so that these groups have terminal ω.The groups with finite terminal are well-known and easily described. If G is one such, then every homomorphic image of G must also have finite terminal.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.