Abstract
Background and Purpose: Machine learning models have been used to diagnose schizophrenia. The main purpose of this research is to introduce an effective schizophrenia hand-modeled classification method. Method: A public electroencephalogram (EEG) signal data set was used in this work, and an automated schizophrenia detection model is presented using a cyclic group of prime order with a modulo 17 operator. Therefore, the presented feature extractor was named as the cyclic group of prime order pattern, CGP17Pat. Using the proposed CGP17Pat, a new multilevel feature extraction model is presented. To choose a highly distinctive feature, iterative neighborhood component analysis (INCA) was used, and these features were classified using k-nearest neighbors (kNN) with the 10-fold cross-validation and leave-one-subject-out (LOSO) validation techniques. Finally, iterative hard majority voting was employed in the last phase to obtain channel-wise results, and the general results were calculated. Results: The presented CGP17Pat-based EEG classification model attained 99.91% accuracy employing 10-fold cross-validation and 84.33% accuracy using the LOSO strategy. Conclusions: The findings and results depicted the high classification ability of the presented cryptologic pattern for the data set used.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.