Abstract

The best‐known proteases in plastids are those that belong to families common to eubacteria. One of the first identified was the ATP‐dependent caseinolytic protease (Clp), whose structure and function have been well characterized in Escherichia coli. Plastid Clp proteins in higher plants are surprisingly numerous and diverse, with at least 16 distinct Clp proteins in the model plant Arabidopsis thaliana. Multiple paralogues exist for several of the different types of plastid Clp protein, with the most extreme being five for the proteolytic subunit ClpP. Both biochemical and genetic studies have recently begun to reveal the intricate structural interactions between the various Clp proteins, and their importance for chloroplast function and plant development. Much of the recent data suggests that the function of many of the Clp proteins probably affects more specific processes within chloroplasts, in addition to the more general ‘housekeeping’ role previously assumed.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.