Abstract
We report on an atomistic molecular dynamics simulation of the complete conformational transition of Escherichia coli adenylate kinase (ADK) using the recently developed TEE-REX algorithm. Two phases characterize the transition pathway of ADK, which folds into the domains CORE and LID and the AMP binding domain AMPbd. Starting from the closed conformation, half-opening of the AMPbd precedes a partially correlated opening of the LID and AMPbd, defining the second phase. A highly stable salt bridge D118-K136 at the LID-CORE interface, contributing substantially to the total nonbonded LID-CORE interactions, was identified as a major factor that stabilizes the open conformation. Alternative transition pathways, such as AMPbd opening following LID opening, seem unlikely, as full transition events were not observed along this pathway. The simulation data indicate a high enthalpic penalty, possibly obstructing transitions along this route.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.