Abstract

The atomic and electronic structures of NiO(001)∕Au(001) interfaces were analyzed by high-resolution medium energy ion scattering (MEIS) and photoelectron spectroscopy using synchrotron-radiation-light. The MEIS analysis clearly showed that O atoms were located above Au atoms at the interface and the inter-planar distance of NiO(001)∕Au(001) was derived to be 2.30 ± 0.05 Å, which was consistent with the calculations based on the density functional theory (DFT). We measured the valence band spectra and found metallic features for the NiO thickness up to 3 monolayer (ML). Relevant to the metallic features, electron energy loss analysis revealed that the bandgap for NiO(001)∕Au(001) reduced with decreasing the NiO thickness from 10 down to 5 ML. We also observed Au 4f lines consisting of surface, bulk, and interface components and found a significant electronic charge transfer from Au(001) to NiO(001). The present DFT calculations demonstrated the presence of an image charge beneath Ni atoms at the interface just like alkali-halide∕metal interface, which may be a key issue to explain the core level shift and band structure.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.