Abstract

Compared with other industrial processes, carbon capture and storage (CCS) will have an unusual impact on atmospheric composition by reducing the CO(2) released from fossil-fuel combustion plants, but not reducing the associated O(2) loss. CO(2) that leaks into the air from below-ground CCS sites will also be unusual in lacking the O(2) deficit normally associated with typical land CO(2) sources, such as from combustion or ecosystem exchanges. CCS may also produce distinct isotopic changes in atmospheric CO(2). Using simple models and calculations, we estimate the impact of CCS or leakage on regional atmospheric composition. We also estimate the possible impact on global atmospheric composition, assuming that the technology is widely adopted. Because of its unique signature, CCS may be especially amenable to monitoring, both regionally and globally, using atmospheric observing systems. Measurements of the O(2)/N(2) ratio and the CO(2) concentration in the proximity of a CCS site may allow detection of point leaks of the order of 1000 ton CO(2) yr(-1) from a CCS reservoir up to 1 km from the source. Measurements of O(2)/N(2) and CO(2) in background air from a global network may allow quantification of global and hemispheric capture rates from CCS to the order of ±0.4 Pg C yr(-1).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.