Abstract

The atf1+ gene of Schizosaccharomyces pombe encodes a bZIP transcription factor with strong homology to the mammalian factor ATF-2. ATF-2 is regulated through phosphorylation in mammalian cells by the stress-activated mitogen-activated protein (MAP) kinases SAPK/JNK and p38. We show here that the fission yeast Atf1 factor is also regulated by a stress-activated kinase, Sty1. The Sty1 kinase is stimulated by a variety of different stress conditions including osmotic and oxidative stress and heat shock. Deletion of the atf1+ gene results in many, but not all, of the phenotypes associated with loss of Sty1, including sensitivity to environmental stress and inability to undergo sexual conjugation. Furthermore, we identify a number of target genes that are induced rapidly in a manner dependent upon both the Sty1 kinase and the Atf1 transcription factor. These genes include gpd1+, which is important for the response of cells to osmotic stress, the catalase gene lambda important for cells to combat oxidative stress, and pyp2+, which encodes a tyrosine-specific MAP kinase phosphatase. Induction of Pyp2 by Atf1 is direct in that it does not require de novo protein synthesis and results in a negative feedback loop that serves to control signaling through the Sty1/Wis1 pathway. We show that Atf1 associates stably and is phosphorylated by the Sty1 kinase in vitro. Taken together, these results indicate that the interaction between AM and Sty1 is direct. These findings highlight a remarkable level of conservation in transcriptional control by stress-activated MAP kinase pathways between fission yeast and mammalian cells.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.