Abstract

In this paper we present a numerical scheme for stochastic differential equations based upon the Wiener chaos expansion. The approximation of a square integrable stochastic differential equation is obtained by cutting off the infinite chaos expansion in chaos order and in number of basis elements. We derive an explicit upper bound for the $L^2$ approximation error associated with our method. The proofs are based upon an application of Malliavin calculus.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.