Abstract

We study the strong approximation of stochastic differential equations with discontinuous drift coefficients and (possibly) degenerate diffusion coefficients. To account for the discontinuity of the drift coefficient we construct an adaptive step sizing strategy for the explicit Euler-Maruyama scheme. As a result, we obtain a numerical method which has -- up to logarithmic terms -- strong convergence order $1/2$ with respect to the average computational cost. We support our theoretical findings with several numerical examples.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.