Abstract

We find an upper bound for the asymptotic dimension of a hyperbolic metric space with a set of geodesics satisfying a certain boundedness condition studied by Bowditch. The primary example is a collection of tight geodesics on the curve graph of a compact orientable surface. We use this to conclude that a curve graph has finite asymptotic dimension. It follows then that a curve graph has property $A_1$. We also compute the asymptotic dimension of mapping class groups of orientable surfaces with genus $\le 2$.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.