Abstract

We prove that all hierarchically hyperbolic spaces have finite asymptotic dimension and obtain strong bounds on these dimensions. One application of this result is to obtain the sharpest known bound on the asymptotic dimension of the mapping class group of a finite type surface: improving the bound from exponential to at most quadratic in the complexity of the surface. We also apply the main result to various other hierarchically hyperbolic groups and spaces. We also prove a small-cancellation result namely: if $G$ is a hierarchically hyperbolic group, $H\leq G$ is a suitable hyperbolically embedded subgroup, and $N\triangleleft H$ is "sufficiently deep" in $H$, then $G/\langle\langle N\rangle\rangle$ is a relatively hierarchically hyperbolic group. This new class provides many new examples to which our asymptotic dimension bounds apply. Along the way, we prove new results about the structure of HHSs, for example: the associated hyperbolic spaces are always obtained, up to quasi-isometry, by coning off canonical coarse product regions in the original space (generalizing a relation established by Masur--Minsky between the complex of curves of a surface and Teichm\"{u}ller space).

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.