Abstract

We present a new model of interstellar dust in which large grains are a single composite material, “astrodust,” and nanoparticle-sized grains come in distinct varieties including polycyclic aromatic hydrocarbons (PAHs). We argue that a single-composition model for grains larger than ∼0.02 μm most naturally explains the lack of frequency dependence in the far-infrared (FIR) polarization fraction and the characteristic ratio of optical to FIR polarization. We derive a size distribution and alignment function for 1.4:1 oblate astrodust grains that, with PAHs, reproduce the mean wavelength dependence and polarization of Galactic extinction and emission from the diffuse interstellar medium while respecting constraints on solid-phase abundances. All model data and Python-based interfaces are made publicly available.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.