Abstract
Over the past 5 years, raphidophyte blooms have been frequently observed along the South Carolina coastal zone. During the 2002, 2003, and 2004 sampling seasons, we investigated temporal fluctuations of algicidal bacteria abundance against raphidophycean flagellates ( Heterosigma akashiwo, Chattonella subsalsa, and Fibrocapsa japonica) using the microplate most probable number (MPN) method in three Kiawah Island brackish stormwater detention ponds (K1, K2, and K75). Local axenic isolates of H. akashiwo, C. subsalsa, and F. japonica were obtained and their susceptibility to algicidal bacteria tested. A total of 195 algicidal bacterial strains were isolated from raphidophyte blooms in the study ponds, and 6 of them were identified at the genus level, and the taxonomic specificity of their algicidal activity was tested against local (pond) and nonlocal isolates of raphidophytes (3 species, 10 total strains). In the ponds, a consistent association was found between raphidophyte bloom development and an increase in bacteria algicidal to the bloom species. In 12 of 15 cases, bloom decline followed the increase in algicidal bacteria to maximum abundances. Although variability was found in the taxonomic specificity of the algicidal bacteria effect (i.e. the number of raphidophyte species affected by a particular bacteria strain) and raphidophyte susceptibility (i.e. the number bacteria strains affecting a particular raphidophyte species), a toxic effect was always found when strains of a raphidophyte species were exposed to algicidal bacteria isolated from a bloom caused by that same species. The results suggest that algicidal bacteria may be an important limiting factor in raphidophyte bloom sustenance and can promote bloom decline in brackish lagoonal eutrophic estuaries.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.