Abstract

SUMMARYMassive fish kills caused by bloom‐forming species of the Raphidophyceae occur in many marine coastal areas and often cause significant economic losses. The ultrastructure and phylogeny of marine raphidophytes from the Brazilian coast have not been fully analyzed. Here, we present the first combined morphological and genetic characterization of raphidophyte strains from the Brazilian coast. Ten strains of four raphidophyte species (Chattonella subsalsa, C. antiqua, Heterosigma akashiwo, and Fibrocapsa japonica) were characterized based on morphology (including ultrastructure) and LSU rDNA sequences. Chattonella subsalsa and C. antiqua formed two distinct genetic clades. We found that the cell size is the only phenotypic feature separating C. subsalsa and C. antiqua strains from Brazil, whereas traditional characteristics used for species separation in the genus Chattonella (i.e., tail size, chloroplast presence in the tail, ‘oboe‐shaped’ mucocysts, and presence of thylakoids in the pyrenoid matrix) were not sufficiently discriminative, due to their overlapping in the two taxa. The phylogenetic analysis indicated intra‐specific geographic differences among C. subsalsa sequences, with two subclades: one formed by isolates from Brazil, USA, and Iran, and another by a sequence from the Adriatic Sea (Italy). Fibrocapsa japonica also showed intra‐specific geographic differences, with a sequence from a Brazilian strain grouped with strains from Japan, Australia, and Germany, all of them distinct from the Italian isolates. This is the first combined morphological and phylogenetic analysis of raphidophytes from the South Atlantic. Our findings broaden knowledge of the biodiversity of this important bloom‐forming algal group.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.