Abstract
BackgroundThe airway microbiome is a subject of great interest for the study of respiratory disease. Anterior nare samples are more accessible than samples from deeper within the nasopharynx. However, the correlation between the microbiota found in the anterior nares and the microbiota found within the nasopharynx is unknown. We assessed the anterior nares and nasopharyngeal microbiota to determine (1) the relation of the microbiota from these two upper airway sites and (2) if associations were maintained between the microbiota from these two sites and two bronchiolitis severity outcomes.ResultsAmong 815 infants hospitalized at 17 US centers for bronchiolitis with optimal 16S rRNA gene sequence reads from both nasal swab and nasopharyngeal aspirate samples, there were strong intra-individual correlations in the microbial communities between the two sample types, especially relating to Haemophilus and Moraxella genera. By contrast, we found a high abundance of Staphylococcus genus in the nasal swabs—a pattern not found in the nasopharyngeal samples and not informative when predicting the dominant nasopharyngeal genera. While these disparities may have been due to sample processing differences (i.e., nasal swabs were mailed at ambient temperature to emulate processing of future parent collected swabs while nasopharyngeal aspirates were mailed on dry ice), a previously reported association between Haemophilus-dominant nasopharyngeal microbiota and the increased severity of bronchiolitis was replicated utilizing the nasal swab microbiota and the same outcome measures: intensive care use (adjusted OR 6.43; 95% CI 2.25–20.51; P < 0.001) and hospital length-of-stay (adjusted OR 4.31; 95% CI, 1.73–11.11; P = 0.002). Additionally, Moraxella-dominant nasopharyngeal microbiota was previously identified as protective against intensive care use, a result that was replicated when analyzing the nasal swab microbiota (adjusted OR 0.30; 95% CI, 0.11–0.64; P = 0.01).ConclusionsWhile the microbiota of the anterior nares and the nasopharynx are distinct, there is considerable overlap between the bacterial community compositions from these two anatomic sites. Despite processing differences between the samples, these results indicate that microbiota severity associations from the nasopharynx are recapitulated in the anterior nares, suggesting that nasal swab samples not only are effective sample types, but also can be used to detect microbial risk markers.
Highlights
The airway microbiome is a subject of great interest for the study of respiratory disease
We found 15 unique genera for comparative analysis after examining the top 10 abundant genera from the Nasal swab (NS) and nasopharyngeal aspirate (NPA) (Fig. 1a)
Nasal swab microbiota profiles Using partitioning around medoids (PAM) clustering, we previously reported four microbiota profiles generated from the NPA samples from infants with bronchiolitis: Haemophilus-dominant, Moraxella-dominant, Streptococcus-dominant, and mixed profiles [21]
Summary
The airway microbiome is a subject of great interest for the study of respiratory disease. We assessed the anterior nares and nasopharyngeal microbiota to determine (1) the relation of the microbiota from these two upper airway sites and (2) if associations were maintained between the microbiota from these two sites and two bronchiolitis severity outcomes. The deeper segments of the airway (the lower respiratory tract) must be assessed through more invasive methods, such as bronchoscopy, which is not feasible for large-scale studies. Multiple studies in this young population have been conducted on the microbiome using nasal swabs (NSs) or nasal brush specimens, which are easier to collect and less invasive than samples from deeper within the airway [3, 6, 7, 13, 14]
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.