Abstract

Abstract The classification of subfactors of small index revealed several new subfactors. The first subfactor above index 4, the Haagerup subfactor, is increasingly well understood and appears to lie in a (discrete) infinite family of subfactors where the ℤ \mathbb{Z} /3 ℤ \mathbb{Z} symmetry is replaced by other finite abelian groups. The goal of this paper is to give a similarly good description of the Asaeda–Haagerup subfactor which emerged from our study of its Brauer–Picard groupoid. More specifically, we construct a new subfactor 𝒮 {\mathcal{S}} which is a ℤ \mathbb{Z} /4 ℤ \mathbb{Z} × \times ℤ \mathbb{Z} /2 ℤ \mathbb{Z} analogue of the Haagerup subfactor and we show that the even parts of the Asaeda–Haagerup subfactor are higher Morita equivalent to an orbifold quotient of 𝒮 {\mathcal{S}} . This gives a new construction of the Asaeda–Haagerup subfactor which is much more symmetric and easier to work with than the original construction. As a consequence, we can settle many open questions about the Asaeda–Haagerup subfactor: calculating its Drinfeld center, classifying all extensions of the Asaeda–Haagerup fusion categories, finding the full higher Morita equivalence class of the Asaeda–Haagerup fusion categories, and finding intermediate subfactor lattices for subfactors coming from the Asaeda–Haagerup categories. The details of the applications will be given in subsequent papers.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.