Abstract
We consider generalized Haagerup categories such that 1 \oplus X admits a Q -system for every non-invertible simple object X . We show that in such a category, the group of order two invertible objects has size at most four. We describe the simple objects of the Drinfeld center and give partial formulas for the modular data. We compute the remaining corner of the modular data for several examples and make conjectures about the general case. We also consider several types of equivariantizations and de-equivariantizations of generalized Haagerup categories and describe their Drinfeld centers. In particular, we compute the modular data for the Drinfeld centers of a number of examples of fusion categories arising in the classification of small-index subfactors: the Asaeda–Haagerup subfactor; the 3^{\mathbb{Z}_4} and 3^{\mathbb{Z}_2 \times \mathbb{Z}_2} subfactors; the 2D2 subfactor; and the 4442 subfactor. The results suggest the possibility of several new infinite families of quadratic categories. A description and generalization of the modular data associated to these families in terms of pairs of metric groups is taken up in the accompanying paper [Comm. Math. Phys. 380 (2020), 1091–1150].
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.