Abstract
We propose an extension of the cyclic hardening plasticity model formulated by Armstrong and Frederick which includes micropolar effects. Our micropolar extension establishes coercivity of the model which is otherwise not present. We study then existence of solutions to the quasistatic, rate-independent Armstrong–Frederick model with Cosserat effects which is, however, still of non-monotone, non-associated type. In order to do this, we need to relax the pointwise definition of the flow rule into a suitable weak energy-type inequality. It is shown that the limit in the Yosida approximation process satisfies this new solution concept. The limit functions have a better regularity than previously known in the literature, where the original Armstrong–Frederick model has been studied.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have