Abstract
The Bacterial Cyclic oligonucleotide-Based Anti-phage Signaling System (CBASS) is an innate immune system that induces cell suicide to defend against phage infections. This system relies on cGAS/DncV-like nucleotidyltransferases (CD-NTase) to synthesize cyclic oligonucleotides (cOs) and CD-NTase-associated proteins (Caps) to execute cell death through DNA cleavage, membrane damage, and NAD depletion, thereby inhibiting phage replication. Ancillary proteins expressed in CBASS, in combination with CD-NTase, ensure the normal synthesis of cOs and prepare CD-NTase for full activation by binding to phage genomes, proteins, or other unknown products. To counteract cell death induced by CBASS, phage genes encode immune evasion proteins that curb Cap recognition of cOs, allowing for phage replication, assembly, and propagation in bacterial cells. This review provides a comprehensive understanding of CBASS immunity, comparing it with different bacterial immune systems and highlighting the interplay between CBASS and phage. Additionally, it explores similar immune escape methods based on shared proteins and action mechanisms between prokaryotic and eukaryotic viruses.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.