Abstract

In 1997, H. Nozaki and M. Taya found numerically that for any regular polygonal inclusion except for a square, both the Eshelby tensor at the center and the average Eshelby tensor over the inclusion domain are equal to the Eshelby tensor for a circular inclusion and independent of the orientation of the inclusion. Then in 2001, these remarkable properties were mathematically justified by Kawashita and Nozaki. In this paper, a more radical property is presented for a rotational symmetrical inclusion: For any N-fold (N is an integer greater than 2 and unequal to 4) rotational symmetrical inclusion, the arithmetic mean of the Eshelby tensors at N rotational symmetrical points in the inclusion is the same as the Eshelby tensor for a circular inclusion and independent of the orientation of the inclusion. It follows that the Eshelby tensor at the center and the average Eshelby tensor over the rotational symmetrical inclusion domain are identical to the Eshelby tensor for a circular inclusion and independent of the orientation of the inclusion as well. This paper shows that although the Eshelby property does not hold for non-ellipsoidal inclusions, the Eshelby tensor for a rotational symmetrical inclusion satisfies the arithmetic mean property.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call