Abstract

The Eshelby-type inclusion problem of an infinite elastic body containing an anti-plane strain inclusion of arbitrary-shape polygonal cross-section is analytically solved using a simplified strain gradient elasticity theory that incorporates one material length scale parameter. The Eshelby tensor (with four nonzero components) is obtained in a general form in terms of two scalar-valued potential functions. These potential functions, as area integrals over the polygonal cross-section, are first converted to two line (contour) integrals using Green’s theorem, which are then evaluated analytically by direct integration. The newly derived Eshelby tensor is separated into a classical part and a gradient part. The former does not contain any elastic constant, while the latter includes the material length scale parameter, thereby enabling the interpretation of the particle (inclusion) size effect. For homogenization applications, the area average of the new position-dependent Eshelby tensor over the polygonal cross-section is also provided in a general form. To illustrate the newly obtained Eshelby tensor, five types of regular polygonal inclusions (i.e., triangular, quadrate, hexagonal, octagonal, and tetrakaidecagonal) are quantitatively studied by directly using the general formulas derived. The components of the induced strain and the averaged Eshelby tensor inside the inclusion are evaluated. Numerical results reveal that the induced strain varies with both the position and the inclusion size. The values of the induced strain components in a polygonal inclusion approach from below those in a corresponding circular inclusion when the inclusion size or the number of sides of the polygonal inclusion increases. The results for the averaged Eshelby tensor components show that the size effect is significant when the inclusion size is small but may be neglected for large inclusions.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call