Abstract
In many remote sensing studies of geophysical fields such as clouds, land cover, or sea ice characteristics, the fractional area coverage of the field in an image is estimated as the proportion of pixels that have the characteristic of interest (i.e., are part of the field) as determined by some thresholding operation. The effect of sensor field-of-view on this estimate is examined by modeling the unknown distribution of subpixel area fraction with the beta distribution, whose two parameters depend upon the true fractional area coverage, the pixel size, and the spatial structure of the geophysical field. Since it is often not possible to relate digital number, reflectance, or temperature to subpixel area fraction, the statistical models described are used to determine the effect of pixel size and thresholding operations on the estimate of area fraction for hypothetical geophysical fields. Examples are given for simulated cumuliform clouds and linear openings in sea ice, whose spatial structures are described by an exponential autocovariance function. It is shown that the rate and direction of change in total area fraction with changing pixel size depends on the true area fraction, the spatial structure, and the thresholding operation used.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.