Abstract

The Escherichia coli RhaR protein activates expression of the rhaSR operon in the presence of its effector, L-rhamnose. The resulting RhaS protein (plus L-rhamnose) activates expression of the L-rhamnose catabolic and transport operons, rhaBAD and rhaT, respectively. Here, we further investigated our previous finding that rhaS deletion resulted in a threefold increase in rhaSR promoter activity, suggesting RhaS negative autoregulation of rhaSR. We found that RhaS autoregulation required the cyclic AMP receptor protein (CRP) binding site at rhaSR and that RhaS was able to bind to the RhaR binding site at rhaSR. In contrast to the expected repression, we found that in the absence of both RhaR and the CRP binding site at the rhaSR promoter, RhaS activated expression to a level comparable with RhaR activation of the same promoter. However, when the promoter included the RhaR and CRP binding sites, the level of activation by RhaS and CRP was much lower than that by RhaR and CRP, suggesting that CRP could not fully coactivate with RhaS. Taken together, our results indicate that RhaS negative autoregulation involves RhaS competition with RhaR for binding to the RhaR binding site at rhaSR. Although RhaS and RhaR activate rhaSR transcription to similar levels, CRP cannot effectively coactivate with RhaS. Therefore, once RhaS reaches a relatively high protein concentration, presumably sufficient to saturate the RhaS-activated promoters, there will be a decrease in rhaSR transcription. We propose a model in which differential DNA bending by RhaS and RhaR may be the basis for the difference in CRP coactivation.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.