Abstract
Hematopoietic stem cell transplantation (HSCT) is a life-saving therapy for hematologic malignancies, such as leukemia and lymphoma and other severe conditions but is associated with significant risks, including graft versus host disease (GVHD), relapse, and treatment-related mortality. The increasing complexity of clinical, genomic, and biomarker data has spurred interest in machine learning (ML), which has emerged as a transformative tool to enhance decision-making and optimize outcomes in HSCT. This review examines the applications of ML in HSCT, focusing on donor selection, conditioning regimen, and prediction of post-transplant outcomes. Machine learning approaches, including decision trees, random forests, and neural networks, have demonstrated potential in improving donor compatibility algorithms, mortality and relapse prediction, and GVHD risk stratification. Integrating “omics” data with ML models has enabled the identification of novel biomarkers and the development of highly accurate predictive tools, supporting personalized treatment strategies. Despite promising advancements, challenges persist, including data standardization, algorithm interpretability, and ethical considerations regarding patient privacy. While ML holds promise for revolutionizing HSCT management, addressing these barriers through multicenter collaborations and regulatory frameworks remains essential for broader clinical adoption. In addition, the potential of ML can cope with some challenges such as data harmonization, patients’ data protection, and availability of adequate infrastructure. Future research should prioritize larger datasets, multimodal data integration, and robust validation methods to fully realize ML’s transformative potential in HSCT.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have