Abstract

In this paper, we present a mathematical model including seakeeping and maneuvering characteristics to analyze the roll reduction for a ship traveling with the stabilizer fin in random waves. The self-tuning PID controller based on the neural network theory is applied to adjust optimal stabilizer fin angles to reduce the ship roll motion in waves. Two multilayer neural networks, including the system identification neural network (NN1) and the parameter self-tuning neural network (NN2), are adopted in the study. The present control technique can save the time for searching the optimal PID gains in any sea states. The simulation results show that the present developed self-tuning PID control scheme based on the neural network theory is indeed quite practical and sufficient for the ship roll reduction in the realistic sea.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.