Abstract

The safe operation of the large, outflow Tailings Storage Facilities (TSF) requires comprehensive and continuous threat monitoring. One of the basic kinds of threat monitoring is to monitor the water conditions in deposited tailings, which is usually carried out using a conventional piezometric observation method from a network of installed piezometers. In complex tailings storage conditions, the reliability of the piezometric method may be questioned. The Seismic Cone Penetration Test (SCPTU) can meet high test standards. The results of the penetration tests closely identify conditions of sediments that determine the tailings water regime verified locally on the basis of pore water pressure dissipation tests. On the other hand, seismic measurements perfectly complement the characteristics of sediments in terms of their saturation. The analysis of the results of SCPTU implemented in the tailings massif also showed that below the phreatic surface, a zone of not fully saturated tailings can be found. Its presence improves the stability conditions of the tailings massif and dams, but also limits the possibility of the static liquefaction of tailings.

Highlights

  • The final link in the technological process of copper production is the tailings storage facility, which receives most of the extracted rock output after processing

  • The upstream extension of the facility results in the fact that the confinement dykes, which close the hydrotransport method requires maintaining a pond of technological water in the central part of the waste storage area, are founded on previously deposited waste

  • Monitoring of water conditions in hydrotechnical facilities, which includes the outflowed postflotation tailings storage facility, is one of the basic operations to ensure the safe exploitation of such facilities

Read more

Summary

Introduction

The final link in the technological process of copper production is the tailings storage facility, which receives most of the extracted rock output after processing. After being drained from outflowed waste, accumulates in the central part of the facility, creating a decant pond [2]. The technological water cycle is monitored and managed both on a global scale related to the entire copper production process, and on a local scale covering the storage facility area. While safe accumulation of the controlled volume of technological water in the decant pond is reduced to maintaining a certain distance from the crown of the dams to the shoreline of the pond, a network of piezometers is used to identify the location of the depression line in the tailings massif [7]

Objectives
Methods
Results
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.