Abstract

Osteoarthritis (OA) is a complex disease of the joint for which current treatments are unsatisfactory, thus motivating development of tissue engineering (TE)-based therapies. To date, TE strategies have had some success, developing replacement tissue constructs with biochemical properties approaching that of native cartilage. However, poor biomechanical properties and limited postimplantation integration with surrounding tissue are major shortcomings that need to be addressed. Functional tissue engineering strategies that apply physiologically relevant biophysical cues provide a platform to improve TE constructs before implantation. In the previous decade, new experimental and theoretical findings in cartilage biomechanics and electromechanics have emerged, resulting in an increased understanding of the complex interplay of multiple biophysical cues in the extracellular matrix of the tissue. The effect of biophysical stimulation on cartilage, and the resulting chondrocyte-mediated biosynthesis, remodeling, degradation, and repair, has, therefore, been extensively explored by the TE community. This article compares and contrasts the cellular response of chondrocytes to multiple biophysical stimuli, and may be read in conjunction with its companion paper that compares and contrasts the subsequent intracellular signal transduction cascades. Mechanical, magnetic, and electrical stimuli promote proliferation, differentiation, and maturation of chondrocytes within established dose parameters or "biological windows." This knowledge will provide a framework for ongoing studies incorporating multiple biophysical cues in TE functional neocartilage for treatment of OA.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call