Abstract

Accommodating learning styles in adaptive educational hypermedia systems (AEHS) improves students' learning performance in web-based learning. Hence, in implementing the systems, the students' learning style identification process is important. Most of today's AEHS rely on a traditional technique of identifying students' learning styles, which is using questionnaires. However, using questionnaires for this purpose is less efficient, cumbersome and may not be that feasible. This study proposes a real-time learning style identification technique by recording students' browsing behaviors and analyzing them by using multi-layer feed forward artificial neural network (MLFF). The result suggests that there is a relationship between the frequencies of students' click on learning components with their staying time on those components. It also indicates that the proposed identification technique performs well in identifying students' learning styles.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.