Abstract

AbstractIdentification of individual learning style is important when developing adaptive educational hypermedia systems. Current systems ask learners to complete questionnaires to identify their learning styles, which might not be appropriate in some contexts. The goal of this research is to identify the learner's learning style by simply observing his/her browsing behaviour without asking the learner to answer any questions or filling out any form. It is implemented through a multi‐layer feed forward neural network (MLFF). Browsing behaviour, in this research, includes three factors, the use of embedded support devices (ESDs), the selection of link types, and the navigation between visited/unvisited nodes. The experiment results showed the proposed model performed well in identifying learning styles. Link type is the dominant factor and Time shift may not be a major factor in the identification of learning styles. Because of the fast execution property of neural networks and identification of learning styles online, it is possible to incorporate learning styles into online adaptive educational web‐based systems.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.