Abstract

In meta-analysis, study participants are nested within studies, leading to a multilevel data structure. The traditional random effects model can be considered as a model with a random study effect, but additional random effects can be added in order to account for dependent effects sizes within or across studies. The goal of this systematic review is three-fold. First, we will describe how multilevel models with multiple random effects (i.e., hierarchical three-, four-, five-level models and cross-classified random effects models) are applied in meta-analysis. Second, we will illustrate how in some specific three-level meta-analyses, a more sophisticated model could have been used to deal with additional dependencies in the data. Third and last, we will describe the distribution of the characteristics of multilevel meta-analyses (e.g., distribution of the number of outcomes across studies or which dependencies are typically modeled) so that future simulation studies can simulate more realistic conditions. Results showed that four- or five-level or cross-classified random effects models are not often used although they might account better for the meta-analytic data structure of the analyzed datasets. Also, we found that the simulation studies done on multilevel meta-analysis with multiple random factors could have used more realistic simulation factor conditions. The implications of these results are discussed, and further suggestions are given.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.