Abstract

n-situ 3D X-ray diffraction (3DXRD) annealing experiments were conducted at the ID-11 beamline at the European Synchrotron Radiation Facility in Grenoble. This allowed us to non-destructively document and subsequently analyse the development of substructures during heating, without the influence of surface effects. A sample of deformed single crystal halite was heated to between 260-400 °C. Before and after heating a volume of 500 by 500 by 300 μm was mapped using a planar beam, which was translated over the sample volume at intervals of 5-10 µm in the vertical dimension. In the following we present partially reconstructed orientation maps over one layer before and after heating for 240min at 260 °C. Additional small syn-heating maps over a constrained sample rotation of 12-30º. The purpose of this was to illuminate a few reflections from 1 or 2 subgrains and follow their evolution during heating. Preliminary results show that significant changes occurred within the sample volume, for which, surface effects can be excluded. Results show a number of processes, including: i) change in subgrain boundary misorientation angle and ii) subgrain subdivision into areas of similar lattice orientation with new subgrain boundary formation. These results demonstrate that 3DXRD coupled with in-situ heating is a successful non-destructive technique for examining real-time post-deformational annealing in strongly deformed crystalline materials with complicated microstructures.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call