Abstract

Non-living natural organic matter (NOM) is ubiquitous in the oceans, atmosphere, sediments, and soils, and represents the most abundant organic carbon reserves on earth. However, a large proportion is considered to be "molecularly uncharacterized" because the inherent complexity of NOM is problematic when applying conventional analytical techniques. This manuscript presents initial applications of LC-NMR (1H) and LC-SPE-NMR (1H) to the studies of NOM isolated from water and soil. LC-NMR is applied to dissolved natural organic matter (DNOM) collected from freshwater environments, and both LC-NMR and LC-SPE-NMR are applied to an alkaline soil extract. The polar and complex nature of the DNOM samples limits conventional reversed phase separation, which can be partially overcome with the use of an ion pair reagent, although such an approach further complicates the NMR detection. LC-SPE-NMR of the soil alkaline extract was encouraging, and specific components in the mixture could be assigned. This work demonstrates that it is both possible to separate and concentrate specific components in NOM such that NMR detection is possible. As NMR information will be critical in unraveling the novel and/or complex structures in NOM this represents a key analytical hurdle in this area.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.