The application of improved particle swarm optimization algorithm involtage stability constrained optimal power flow
In order to solve the problem of minimizing cost of power generation calculation in voltage stability constrained optimal power flow optimal of power system, dynamic double-population particle swarm optimization algorithm is used on the basis of the traditional particle swarm optimization algorithm, In this algorithm the particles not only depends on successful experience to move but also get experience from failure cases. And the particles are constantly changing in the process of iteration, which overcomes the local convergence of traditional PSO. The dynamic double-population particle swarm optimization algorithm is applied to the voltage stability constrained optimal power flow calculation to minimizing the generation cost problem, which was tested in a standard IEEE30 system, in order to prove the effectiveness of dynamic double-population particle swarm optimization algorithm, it is compared with genetic algorithm (GA) and results show that, dynamic double-population particle swarm optimization algorithm is better than genetic algorithm in computing power cost minimization problem.
- # Dynamic Particle Swarm Optimization Algorithm
- # Dynamic Particle Swarm Optimization
- # Dynamic Particle Swarm
- # Dynamic Optimization Algorithm
- # Traditional Particle Swarm Optimization Algorithm
- # Particle Swarm Optimization Algorithm
- # Improved Particle Swarm Optimization Algorithm
- # Dynamic Optimization
- # Dynamic Algorithm
- # Genetic Algorithm
- Research Article
- 10.4028/www.scientific.net/amr.860-863.2211
- Dec 13, 2013
- Advanced Materials Research
This paper proposes a new application of dynamic particle swarm optimization (PSO) algorithm for parameter identification of vector controlled asynchronous propulsion motor (APM) in electric propulsion ship. The dynamic PSO modifies the inertia weight, learning coefficients and two independent random sequences which affect the convergence capability and solution quality, in order to improve the performance of the standard PSO algorithm. The standard PSO and dynamic PSO algorithms use measurements of the mt-axis currents, voltages of APM as the inputs to parameter identification system. The experimental results obtained compare the identified parameters with the actual parameters. There is also a comparison of the solution quality between standard PSO and dynamic PSO algorithms. The results demonstrate that the dynamic PSO algorithm is better than standard PSO algorithm for APM parameter identification. Dynamic PSO algorithm can improve the performance of ship propulsion motor under abrupt load variation.
- Research Article
2
- 10.25236/ajcis.2021.040109
- Jan 1, 2021
- Academic Journal of Computing & Information Science
The octane number of hydrogenated gasoline is difficult to be obtained in real time in the modeling of finished gasoline blending formula. Considering the problems of XGBOOST algorithm, gradient lifting tree algorithm and random forest regression algorithm network, a dynamic harmonious search hybrid particle swarm optimization (DSHPHO) algorithm was proposed to predict the octane number of finished gasoline. In this algorithm, the improved HS algorithm is embedded into the PSO algorithm, and all the particles are considered as harmonious memory (HM). Search by harmony search (HS) algorithm of randomness and evolution mechanism to improve the diversity of particle swarm, makes more ergodic particle swarm at the beginning of the search, reduce sensitivity to the initial value of the algorithm and keep randomly generated in the whole evolution process of the possibility of new particles, fundamentally solves the particle swarm optimization algorithm in dimension increase diversity is less defects. The algorithm has faster convergence speed and better global search ability. Finally, based on this method and industrial historical data, the octane number prediction model of hydrogenated gasoline components is established. The simulation results show that the dynamic harmonious search hybrid particle swarm optimization algorithm has better prediction performance than the traditional particle swarm optimization algorithm, and can be used to predict the octane number.
- Conference Article
13
- 10.1109/isie.2013.6563616
- May 1, 2013
This paper proposes a novel application of a dynamic particle swarm optimization (PSO) algorithm for determining a maximum power point (MPP) of a solar photovoltaic (PV) panel. Solar PV cells have a non-linear V-I characteristic with a distinct MPP which depends on environmental factors such as temperature and irradiation. In order to continuously harvest maximum power from the solar PV panel, it always has to be operated at its MPP. The proposed dynamic PSO algorithm is one of the PSO algorithm variants, which modifies the acceleration coefficients of the cognitive and social components in the velocity update equation of the PSO algorithm as linear time-varying parameters to improve the global search capability of particles in the early stage of the optimization process and direct the global optima at the end stage. The obtained simulation results are compared with MPPs achieved using other algorithms such as the standard PSO, and Perturbation and Observation (P&O) algorithms under various atmospheric conditions. The results show that the dynamic PSO algorithm is better than the standard PSO and P&O algorithms for determining and tracking MPPs of solar PV panels.
- Research Article
19
- 10.1177/1687814018824930
- Mar 1, 2019
- Advances in Mechanical Engineering
A dynamic adaptive particle swarm optimization and genetic algorithm is presented to solve constrained engineering optimization problems. A dynamic adaptive inertia factor is introduced in the basic particle swarm optimization algorithm to balance the convergence rate and global optima search ability by adaptively adjusting searching velocity during search process. Genetic algorithm–related operators including a selection operator with time-varying selection probability, crossover operator, and n-point random mutation operator are incorporated in the particle swarm optimization algorithm to further exploit optimal solutions generated by the particle swarm optimization algorithm. These operators are used to diversify the swarm and prevent premature convergence. Tests on nine constrained mechanical engineering design optimization problems with different kinds of objective functions, constraints, and design variables in nature demonstrate the superiority of the dynamic adaptive particle swarm optimization and genetic algorithm against several other meta-heuristic algorithms in terms of solution quality, robustness, and convergence rate in most cases.
- Research Article
67
- 10.1007/s11042-020-08699-8
- Mar 13, 2020
- Multimedia Tools and Applications
Image segmentation has considered an important step in image processing. Fuzzy c-means (FCM) is one of the commonly used clustering algorithms because of its simplicity and effectiveness. However, FCM has the disadvantages of sensitivity to initial values, falling easily into local optimal solution and sensitivity to noise. To tackle these disadvantages, many optimization-based fuzzy clustering methods have been proposed in the literature survey. Particle swarm optimization (PSO) has good global optimization capability and a hybrid of FCM and PSO have improved accuracy over tradition FCM clustering. In this paper, a new image segmentation method based on Dynamic Particle swarm optimization (DPSO) and FCM algorithm along with the noise reduction mechanism is proposed. DPSO has the advantages to change the inertia weight and learning parameters dynamically. It adopts the inertia weight according to the fitness value and learning parameters along with time. The proposed method combines DPSO with FCM, using the advantages of global optimization searching and parallel computing of DPSO to find a superior result of the FCM algorithm. Moreover, a noise reduction mechanism based on the surrounding pixels is used for enhancing the anti-noise ability. The synthetic image and Magnetic Resonance Imaging (MRI) have been used for testing the proposed method by introducing different types of noises and the results show that the proposed algorithm has better performance and less sensitive to noise.
- Book Chapter
3
- 10.1007/978-981-32-9775-3_81
- Dec 4, 2019
This paper proposes a modified optimal PIDD2 controller for flexible-link manipulator. The single flexible link is modeled mathematically in which the flexible link and base rotation are modeled as stiff systems using Lagrange’s method. The system obtained as a result will have one degree of freedom. In the proposed work, the comparison of two types of controller, i.e., PID and PIDD2, is done for controlling the position and trajectory of the single-link manipulator. The main objective is to control the trajectory with minimum tip oscillation. The tuning of the controllers is done using the Ziegler–Nichols (Z-N) method and Dynamic Particle Swarm Optimization (DPSO) algorithm. The dynamic particle swarm optimization algorithm is an improved version of the particle swarm optimization algorithm which identifies and eliminates the dilemma of stagnation and local optima. The findings show that the PIDD2 controller with dynamically tuned parameters is better in controlling the position and trajectory of the single-link manipulator. All the simulations were performed on MATLAB–SIMULINK.
- Research Article
8
- 10.1117/1.oe.52.10.107103
- Oct 4, 2013
- Optical Engineering
An innovative method based on dynamic particle swarm optimization (DPSO) algorithm is presented to demodulate the strain profile along a fiber Bragg grating (FBG) from its reflection spectrum, which is calculated by using the modified transfer matrix method. To improve the optimization performances of algorithm itself, the inertia weight of the DPSO algorithm is adjusted dynamically according to the distance between the individual particle and the global optimal particle in the current population. Then the numerical simulation and experimental verification of the reconstruction of nonuniform strain profiles are comprehensively carried out. Both the simulation examples and experimental results verify the feasibility and validity of the present method.
- Book Chapter
- 10.1007/978-3-642-18387-4_55
- Jan 1, 2011
Risk prediction about investor portfolio holdings can provide powerful test of asset pricing theories. In this paper, we present dynamic Particle Swarm Optimization (PSO) algorithm to Markowitz portfolio selection problem, and improved the algorithm in pseudo code as well as implement in computer program. Furthermore in order to prevent blindness in operation and selection of investment, we tried to make risk least and seek revenue most in investment and so do in the program. As used in practice, it showed great application value.
- Conference Article
- 10.1109/cibim.2011.5949226
- Apr 1, 2011
Biometric models are typically designed a priori using limited number of samples acquired from complex environments that change in time during operations. Therefore, these models are often poor representatives of the biometric trait to be recognized. To circumvent this problem, ensemble of classifiers can be used to integrate solutions obtained from multiple diverse classifiers. In this paper, two dynamic particle swarm optimization (DPSO) algorithms are compared for the evolution of classifier ensembles during supervised incremental learning of newly-acquired data samples in video-based face recognition. Using the properties of these population-based optimization algorithms, an incremental DPSO learning strategy for adaptive classification systems (ACSs) is employed to evolve a pool of fuzzy ARTMAP classifiers while an heterogeneous ensemble is selected through a greedy search process that seeks to maximize both performance and diversity. The performance of dynamic niching PSO (DNPSO) and speciation PSO (SPSO) algorithms is assessed in terms of classification rate, resource requirements and diversity for different incremental learning scenarios of new data blocks extracted from real-world video streams. Simulation results indicate that both DPSO algorithms can efficiently create accurate ensembles while reducing computational complexity. In addition, directly selecting representative subswarm particles to form diversified classifier ensembles significantly reduces the computational complexity.
- Conference Article
1
- 10.1109/icmmt.2012.6230416
- May 1, 2012
The adaptive dynamic Meta particle swarm optimization (ADMPSO) algorithm is proposed to apply in power patterns synthesis for conformal arrays. To begin, the dominated subgroup and nondominated subgroup are defined on the basis of traditional Meta particle swarm. Meanwhile, the adaptive dynamic modulating for multiple-subgroup is realized by introducing the downsizing of nondominated subgroup, and the expansion of dominated subgroup, which improves both the convergence speed and exploration ability significantly. Finally, based on the target fitness function built for power pattern synthesis in arbitrary arrays, ADMPSO algorithm has been used in synthesizing three dimensional (3D) power patterns for conical array, with all polarization fields considered.
- Research Article
- 10.3724/sp.j.1087.2008.00104
- Jul 10, 2008
- Journal of Computer Applications
Dynamic Double-population Particle Swarm Optimization (DDPSO) algorithm was presented to solve the problem that the standard PSO algorithm easily fell into a locally optimized point, where the population was divided into two sub-populations varying with their own evolutionary learning strategies and exchanging between them. The algorithm had been applied to power system Unit Commitment (UC). The DDPSO particle consisted of a two-dimensional real number matrix representing the generation schedule. According to the proposed coding manner, the DDPSO algorithm could directly solve UC. Simulation results show that the proposed method performs better in term of precision and convergence property.
- Research Article
23
- 10.1080/0305215x.2012.709514
- Jul 1, 2013
- Engineering Optimization
This article presents a dynamic programming-based particle swarm optimization (DP-based PSO) algorithm for solving an inventory management problem for large-scale construction projects under a fuzzy random environment. By taking into account the purchasing behaviour and strategy under rules of international bidding, a multi-objective fuzzy random dynamic programming model is constructed. To deal with the uncertainties, a hybrid crisp approach is used to transform fuzzy random parameters into fuzzy variables that are subsequently defuzzified by using an expected value operator with optimistic–pessimistic index. The iterative nature of the authors’ model motivates them to develop a DP-based PSO algorithm. More specifically, their approach treats the state variables as hidden parameters. This in turn eliminates many redundant feasibility checks during initialization and particle updates at each iteration. Results and sensitivity analysis are presented to highlight the performance of the authors’ optimization method, which is very effective as compared to the standard PSO algorithm.
- Research Article
- 10.1155/2018/4521701
- Jul 16, 2018
- Mathematical Problems in Engineering
Dynamic multiaircraft cooperative suppression interference array (MACSIA) optimization problem is a typical dynamic multiobjective optimization problem. In this paper, the sum of the distance between each jamming aircraft and the enemy air defense radar network center and the minimum width of the safety area for route planning are taken as the objective functions. The dynamic changes in the battlefield environment are reduced to two cases. One is that the location of the enemy air defense radar is mobile, but the number remains the same. The other is that the number of the enemy air defense radars is variable, but the original location remains unchanged. Thus, two dynamic multiobjective optimization models of dynamic MACSIA are constructed. The dynamic multiobjective particle swarm optimization algorithm is used to solve the two models, respectively. The optimal dynamic MACSIA schemes which satisfy the limitation of the given suppression interference effect and ensure the safety of the jamming aircraft themselves are obtained by simulation experiments. And then verify the correctness of the constructed dynamic multiobjective optimization model, as well as the feasibility and effectiveness of the dynamic multiobjective particle swarm optimization algorithm in solving dynamic MACSIA problem.
- Research Article
13
- 10.3901/cjme.2015.1127.140
- Dec 31, 2015
- Chinese Journal of Mechanical Engineering
Particle swarm optimization (PSO) algorithm is an effective bio-inspired algorithm but it has shortage of premature convergence. Researchers have made some improvements especially in force rules and population topologies. However, the current algorithms only consider a single kind of force rules and lack consideration of comprehensive improvement in both multi force rules and population topologies. In this paper, a dynamic topology multi force particle swarm optimization (DTMFPSO) algorithm is proposed in order to get better search performance. First of all, the principle of the presented multi force particle swarm optimization (MFPSO) algorithm is that different force rules are used in different search stages, which can balance the ability of global and local search. Secondly, a fitness-driven edge-changing (FE) topology based on the probability selection mechanism of roulette method is designed to cut and add edges between the particles, and the DTMFPSO algorithm is proposed by combining the FE topology with the MFPSO algorithm through concurrent evolution of both algorithm and structure in order to further improve the search accuracy. Thirdly, Benchmark functions are employed to evaluate the performance of the DTMFPSO algorithm, and test results show that the proposed algorithm is better than the well-known PSO algorithms, such as µPSO, MPSO, and EPSO algorithms. Finally, the proposed algorithm is applied to optimize the process parameters for ultrasonic vibration cutting on SiC wafer, and the surface quality of the SiC wafer is improved by 12.8% compared with the PSO algorithm in Ref. [25]. This research proposes a DTMFPSO algorithm with multi force rules and dynamic population topologies evolved simultaneously, and it has better search performance.
- Research Article
- 10.1155/2021/6598782
- Jan 1, 2021
- Journal of Sensors
Based on the analysis of bacterial parasitic behavior and biological immune mechanism, this paper puts forward the basic idea and implementation method of an embedding adaptive dynamic probabilistic parasitic immune mechanism into a particle swarm optimization algorithm and constructs particle swarm optimization based on an adaptive dynamic probabilistic parasitic immune mechanism algorithm. The specific idea is to use the elite learning mechanism for the parasitic group with a strong parasitic ability to improve the ability of the algorithm to jump out of the local extreme value, and the host will generate acquired immunity against the parasitic behavior of the parasitic group to enhance the diversity of the host population’s particles. Parasitic behavior occurs when the number of times reaches a predetermined algebra. In this paper, an example simulation is carried out for the prescheduling and dynamic scheduling of immune inspection. The effectiveness of prescheduling for immune inspection is verified, and the rules constructed by the adaptive dynamic probability particle swarm algorithm and seven commonly used scheduling rules are tested on two common dynamic events of emergency task insertion and subdistributed immune inspection equipment failure. In contrast, the experimental data was analyzed. From the analysis of experimental results, under the indicator of minimum completion time, the overall performance of the adaptive dynamic probability particle swarm optimization algorithm in 20 emergency task insertion instances and 20 subdistributed immune inspection equipment failure instances is better than that of seven scheduling rules. Therefore, in the two dynamic events of emergency task insertion and subdistributed immune inspection equipment failure, the adaptive dynamic probabilistic particle swarm algorithm proposed in this paper can construct effective scheduling rules for the rescheduling of the system when dynamic events occur and the constructed scheduling. The performance of the rules is better than that of the commonly used scheduling rules. Among the commonly used scheduling rules, the performance of the FIFO scheduling rules is also better. In general, the immune inspection scheduling multiagent system in this paper can complete the prescheduling of immune inspection and process dynamic events of the inspection process and realize the prereactive scheduling of the immune inspection process.
- Ask R Discovery
- Chat PDF
AI summaries and top papers from 250M+ research sources.