Abstract

Panoramic radiography is a standard diagnostic imaging method for dentists. However, it is challenging to detect mandibular trauma and fractures in panoramic radiographs due to the superimposed facial skeleton structures. The objective of this study was to develop a deep learning algorithm that is capable of detecting mandibular fractures and trauma automatically and compare its performance with general dentists. This is a retrospective diagnostic test accuracy study. This study used a two-stage deep learning framework. To train the model, 190 panoramic images were collected from four different sources. The mandible was first segmented using a U-net model. Then, to detect fractures, a model named Faster region-based convolutional neural network was applied. In the end, a comparison was made between the accuracy, specificity, and sensitivity of artificial intelligence and general dentists in trauma diagnosis. The mAP50 and mAP75 for object detection were 98.66% and 57.90%, respectively. The classification accuracy of the model was 91.67%. The sensitivity and specificity of the model were 100% and 83.33%, respectively. On the other hand, human-level diagnostic accuracy, sensitivity, and specificity were 87.22 ± 8.91, 82.22 ± 16.39, and 92.22 ± 6.33, respectively. Our framework can provide a level of performance better than general dentists when it comes to diagnosing trauma or fractures.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call