Abstract

Filtration is the final physical barrier preventing the passage of microbial pathogens into public drinking water. Proper pre-treatment via coagulation is essential for maintaining good particle removal during filtration. To improve filter performance at the Elgin Area WTP, artificial neural network (ANN) models were applied to optimize pre-filtration processes in terms of settled water turbidity and alum dosage. ANNs were successfully developed to predict future settled water turbidity based on seasonal raw water variables and chemical dosages, with correlation (R2) values ranging from 0.63 to 0.79. Additionally, inverse-process ANNs were developed to predict the optimal alum dosage required to achieve desired settled water turbidity, with correlation (R2) values ranging from 0.78 to 0.89.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.