Abstract

Time-of-flight secondary ion mass spectrometry (ToF-SIMS) imaging is a potent analytical tool that provides spatially resolved chemical information on surfaces at the microscale. However, the hyperspectral nature of ToF-SIMS datasets can be challenging to analyze and interpret. Both supervised and unsupervised machine learning (ML) approaches are increasingly useful to help analyze ToF-SIMS data. Random Forest (RF) has emerged as a robust and powerful algorithm for processing mass spectrometry data. This machine learning approach offers several advantages, including accommodating nonlinear relationships, robustness to outliers in the data, managing the high-dimensional feature space, and mitigating the risk of overfitting. The application of RF to ToF-SIMS imaging facilitates the classification of complex chemical compositions and the identification of features contributing to these classifications. This tutorial aims to assist nonexperts in either machine learning or ToF-SIMS to apply Random Forest to complex ToF-SIMS datasets.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.