Abstract
Flood is one of the most common natural disasters worldwide. The aim of this study was to evaluate the application of the Dempster–Shafer-based evidential belief function (EBF) for spatial prediction of flood-susceptible areas in Brisbane, Australia. This algorithm has been tested in landslide and groundwater mapping; however, it has not been examined in flood susceptibility modelling. EBF has an advantage over other statistical methods through its capability of evaluating the impacts of all classes of every flood-conditioning factor on flooding and assessing the correlation between each factor and flooding. EBF outcomes were compared with the results of well-known statistical methods, including logistic regression (LR) and frequency ratio (FR). Flood-conditioning factor data set consisted of elevation, aspect, plan curvature, slope, topographic wetness index (TWI), geology, stream power index (SPI), soil, land use/cover, rainfall, distance from roads and distance from rivers. EBF produced the highest prediction rate (82.60%) among all the methods. The research findings may provide a useful methodology for natural hazard and land use management.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.