Abstract

This study investigates the ability of a coupled finite element model to simulate Microbially Induced Calcium Carbonate Precipitation (MICP) and associated healing behaviour in cementitious samples. This recent coupled 3D model was first developed for simulating the behaviour of autonomic healing systems in cementitious structural elements. It employs a cohesive zone constitutive model for simulating the damage-healing behaviour of an embedded interface within 3D continuum elements. Fluid flow is simulated using a mass balance equation and Darcy’s law. Healing is computed via a generalised curing front model that simulates the accumulation of healed material within a crack. The research reported in this article demonstrates that the curing front model can be calibrated to predict healing from MICP in cementitious specimens with good accuracy.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.