Abstract

The application of recycled marine materials to develop sustainable remediation technologies in marine environment was assessed. The remediation strategy consisted of a shell carrier mounted bacterial consortium composed of hydrocarbonoclastic strains enriched with nutrients (Bioaug SC). Pilot scale studies (5000l) were used to examine the ability of Bioaug-SC to degrade weathered crude oil (10gl−1; initially 315,000±44,000mgl−1) and assess the impacts of the introduction and biodegradation of oil. Total petroleum hydrocarbon mass was effectively reduced by 53.3 (±5.75)% to 147,000 (±21,000) mgl−1 within 27weeks. 16S rDNA bacterial community profiling using Denaturant Gradient Gel Electrophoresis revealed that cyanobacteria and Proteobacteria dominated the microbial community. Aquatic toxicity assessment was conducted by ecotoxicity assays using brine shrimp hatchability, Microtox and Phaeodactylum tricornutum. This study revealed the importance of combining ecotoxicity assays with oil chemistry analysis to ensure safe remediation methods are developed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.