Abstract
Calcium is an essential element for plant growth and development, and it plays an important role in the responses of plants to abiotic stress. High concentrations of heavy metal ions in soil significantly affect the yield and quality of crops and pose human health threats when these ions accumulate in edible organs. The Ca2+/H+ exchanger (CAX) family is a class of transporters that mediate the transmembrane transport of both Ca2+ and metal ions, and they are widely involved in regulating plant growth and development and stress responses. Here, we cloned an AtCAX2 ortholog, MdCAX2L-2, from apple. It is constitutively expressed in various apple tissues and significantly induced by Ca2+ and Ba2+ treatments. The MdCAX2L-2 protein is located in the vacuolar membrane in both plant and yeast cells. Overexpression of MdCAX2L-2 enhanced the tolerance of the yeast mutant K667 to high concentrations of Ca2+ and Ba2+. In addition, the role of MdCAX2L-2 in modulating Ba2+ tolerance was identified using MdCAX2L-2-overexpressing transgenic Arabidopsis plants and apple calli. Comparison of growth phenotypes and stress-related physiological indexes under BaCl2 treatment indicated that MdCAX2L-2 could enhance the Ba2+ tolerance of plants by promoting Ba2+ compartmentalization into the vacuoles and eliminating excess ROS. Our results provide insights that will aid future studies examining the function of CAX proteins in regulating stress tolerance in fruit crops, as well as their underlying mechanisms.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.