Abstract

Acetylcholinesterase (AChE) activity has been studied in the myoblast of skeletal muscle of the 9-13 day fetal rabbit. Cytochemical activity is present in the nuclear envelope and the endoplasmic reticulum, including its derivatives the subsurface reticulum and the sarcoplasmic reticulum. End product is also found in the Golgi complex of the more differentiated myoblasts. The formation of reticulum-bound acetylcholinesterase in the myoblast appears to be independent of nerve-muscle contact, since the enzyme is present before the outgrowth of the spinal nerve. The nerve lacks cytochemical end product until the myoblast is well differentiated. Possible mechanisms of spontaneous muscle contraction have been discussed. A second type of myotomal cell, which exhibits a poorly localized end product of AChE activity, has been described. The ready solubility of the enzyme or diffusibility of its end product suggests that the enzyme may be a lyoesterase. This cell may be the precursor of the morphologically undifferentiated cell which is closely apposed to the myotubes in later stages of skeletal muscle development. Biochemical studies show a significant increase in AChE activity in the dermomyotome by day 12, when many of the myoblasts are well differentiated and the second type of myotomal cell is prominent. Cytochemical studies have indicated that many of the cells in the sample lack reaction product of enzymic activity, whereas others are very active. Biochemical values, therefore, reflect the amount of enzyme in the dermomyotome as a whole, but give little information on the enzymic content of individual cells.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call