Abstract

Thermographic nondestructive testing is used for the detection of near-surface discontinuities in materials, where indications of potential defects or discontinuities are detected and evaluated by their thermal contrast. The key requirements for successful thermographic data processing include managing non-uniform heating and identifying nominal areas. Advanced methods often rely on numerical simulation, which can be challenging and time-consuming. This study suggests a new simple method of thermal contrast calculation for flash-pulse thermography. It is based on the analysis of the inverse apparent effusivity. It includes an automated indication of the sound (defect-free) area and the creation of an artificial reference sequence, which is based on a temperature profile of the sound area and the non-uniform heating map. Derivative analysis of the smoothed contrast data is applied to improve detectability and Contrast/Noise Ratio (CNR). An experimental comparison of the proposed method with other known methods is presented. In the presented example, it allowed detection of 23 defects with an average CNR of 6.13 dB, against the traditional differential absolute contrast method, which detected only 13 defects with an average CNR of 0.53 dB. Thus, high detectability and high CNR values provided by the proposed method are demonstrated.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call