Abstract
The antitumor drug CC-1065 is thought to exert its effects by covalent bonding to N3 of adenine in DNA and interfering with some aspect of DNA metabolism. Therefore, it is of interest to determine what effect this drug has on enzymes involved in various aspects of DNA metabolism. In this report, we examine the ability of two DNA helicases, the dda protein of phage T4 and helicase II of Escherichia coli, to unwind CC-1065-adducted, tailed, oligonucleotides. It is shown that the presence of the drug on DNA strongly inhibits unwinding catalyzed by the T4 and E. coli proteins. A significant difference between the results obtained with the two helicases is that DNAs containing drug on either the tailed or the completely duplex strands are poor substrates for helicase II but dda protein-mediated unwinding is inhibited only when the drug is on the tailed strand. The drug-modified, helicase-released, strands migrate abnormally through a native gel, suggesting that the drug traps an unusual secondary structure generated in the course of protein-mediated unwinding. A kinetic analysis of the drug-inhibited reactions reveals that the helicases are trapped by the DNA-drug complex. This is evidenced by a decrease in the rate of helicase exchange between drug-bound substrate and drug-free duplex. The implications of these results with respect to the mechanism of action of CC-1065 in vivo are discussed.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.