Abstract

BackgroundGenetically T cells modified with cancer-specific chimeric antigen receptors (CARs) showed great promise in mediate tumor regression, especially in patients with advanced leukemia. However, the therapeutic effect against solid tumors is not as prominent as anticipated to exhibit potent antitumor efficacy. The underlying mechanism maybe attributed to the inhibitory co-stimulatory pathways such as (PD1/PDL1), which provide tumor cells an escape mechanism from immunosurveillance. Therefore, by exchanging the transmembrane and cytoplasmic tail of PD1 with positive costimulatory molecules, such as CD28 and 4–1BB signaling domains (PD1-CD28-4-1BB, PD1-CAR), the T cell-negative co-stimulatory PD1/PDL1 signal pathway was thus converted into a positive one. This study aimed to investigate whether the genetically modified CAR-T-PD1 cells activated by SOCS1 silenced DCs have enhanced anti-neoplastic potential in vitro/in vivo.MethodsIn order to enhance the antigenicity and reduce transformation activity, a modified HPV16 E7 (HPV16mE7) was employed to load on dendritic cells (DCs) with SOCS1 silenced to improve its antitumor efficiency and targeting ability against cervical cancer. The CAR-T-PD1 cells activated by the generated DCs were transfused into murine models bearing tumor of CaSki cells that expressing PDL1 and HPV16 E6/E7 for in vitro/in vivo antitumor activity assay.ResultsThe data showed that DC-activated CAR-T-PD1 cells significantly increased the secretion of IL-2, IFN-γ and TNF-α, whilst enhanced cytotoxic activity, suppressed tumor growth and prolong the survival time compared with the controls.ConclusionThese results indicated that the genetically engineered T cells activated by DCs had improved antitumor efficiency and targeting ability. Furthermore, it was suggested that it may have important implications for the improvement of T cell immunotherapy against cervical cancer.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.