Abstract

To construct a free and accurate breast cancer mortality prediction tool by incorporating lifestyle factors, aiming to assist healthcare professionals in making informed decisions. In this retrospective study, we utilized a ten-year follow-up dataset of female breast cancer patients from a major Chinese hospital and included 1,390 female breast cancer patients with a 7% (96) mortality rate. We employed six machine learning algorithms (ridge regression, k-nearest neighbors, neural network, random forest, support vector machine, and extreme gradient boosting) to construct a mortality prediction model for breast cancer. This model incorporated significant lifestyle factors, such as postsurgery sexual activity, use of totally implantable venous access ports, and prosthetic breast wear, which were identified as independent protective factors. Meanwhile, ten-fold cross-validation demonstrated the superiority of the random forest model (average AUC = 0.918; 1-year AUC = 0.914, 2-year AUC = 0.867, 3-year AUC = 0.883). External validation further supported the model's robustness (average AUC = 0.782; 1-year AUC = 0.809, 2-year AUC = 0.785, 3-year AUC = 0.893). Additionally, a free and user-friendly web tool was developed using the Shiny framework to facilitate easy access to the model. Our breast cancer mortality prediction model is free and accurate, providing healthcare professionals with valuable information to support their clinical decisions and potentially promoting healthier lifestyles for breast cancer patients.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.