Abstract
Antimicrobial proteins, and especially antimicrobial peptides (AMPs) hold great promise in the control of animal and plant diseases with low risk of pathogen resistance. The two puroindolines, a and b, from wheat control endosperm softness of the wheat caryopsis (grain), but have also been shown to inhibit the growth and kill various bacteria and fungi, while showing little toxicity to erythrocytes. Puroindolines are small (~ 13kDa) amphipathic proteins with a characteristic tryptophan-rich domain (TRD) that is part of an 18 or 19 amino acid residue loop subtended by a disulfide bond. This review presents a brief history of the puroindolines, their physical-chemical characteristics, their interaction with lipids and membranes, and their activity as antimicrobial proteins and AMPs. In this latter context, the use of the TRDs of puroindoline a and b in puroindoline AMP function is reviewed. The activity of puroindoline a and b and their AMPs appear to act through similar but somewhat different modes, which may involve membrane binding, membrane disruption and ion channel formation, and intra-cellular nucleic acid binding and metabolic disruption. Natural and synthetic mutants have identified key elements of the puroindolines for antimicrobial activity.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have