Abstract

Little is known experimentally about the detailed orientation of membrane-bound maculatin 1.1 (Mac1), an antimicrobial peptide from the skin secretions of Australian tree frogs. In this work multiple 15N-labelled or 2H-labelled Mac1 with dodecylphosphocholine (DPC) micelles and isotropic DMPC/DHPC (q = 0.5) bicelles were investigated by solution NMR, circular dichroism (CD) spectroscopy, neutron reflectometry and molecular dynamics (MD) simulations in explicit solvent. In buffer, the 15N-1H HSQC and CD spectra were indicative of the peptide being random coiled. In the presence of micelles or isotropic bicelles, a unique and helical peptide structure that was confirmed by CD was found. The titration of the soluble paramagnetic agent gadolinium (Gd-DTPA) into the Mac1-DPC solution led to enhanced relaxation of all 15N labelled residues. The peptide N-terminus was more exposed to Gd-DTPA than the C-terminus in micelles, while only the Gly-4 and Ala-18 resonances were significantly reduced in the presence of isotropic bicelles. MD simulations of Mac1 fully inserted into a DPC micelle converged towards a solvent exposed orientation and a topology where Mac1 was wrapped around the DPC micelle with the more hydrophobic side facing inward. MD simulations of Mac1 fully inserted into a phosphatidylcholine (PC) bilayer converged towards a kinked transmembrane orientation with water molecules penetrating around Lys-8. A deuterium labelled Mac1 used in neutron reflectometry experiments suggested a preferred orientation in zwitterionic PC bilayers. These results give insight into the membrane disrupting activity of Mac1 against cell membranes.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call