Abstract
BackgroundThis study aims to explore the antibacterial activity of cethromycin against Staphylococcus aureus (S. aureus), and its relationship with multilocus sequence typing (MLST), erythromycin ribosomal methylase (erm) genes and macrolide-lincosamide-streptogramin B (MLSB) phenotypes of S. aureus.ResultsThe minimum inhibitory concentrations (MICs) of cethromycin against 245 S. aureus clinical isolates ranged from 0.03125 to ≥ 8 mg/L, with the resistance of 38.8% in 121 methicillin-resistant S. aureus (MRSA). This study also found that cethromycin had strong antibacterial activity against S. aureus, with the MIC ≤ 0.5 mg/L in 55.4% of MRSA and 60.5% of methicillin-sensitive S. aureus (MSSA), respectively. The main MLSTs of 121 MRSA were ST239 and ST59, and the resistance of ST239 isolates to cethromycin was higher than that in ST59 isolates (P = 0.034). The top five MLSTs of 124 MSSA were ST7, ST59, ST398, ST88 and ST120, but there was no difference in the resistance of MSSA to cethromycin between these STs. The resistance of ermA isolates to cethromycin was higher than that of ermB or ermC isolates in MRSA (P = 0.016 and 0.041, respectively), but the resistance of ermB or ermC isolates to cethromycin was higher than that of ermA isolates in MSSA (P = 0.019 and 0.026, respectively). The resistance of constitutive MLSB (cMLSB) phenotype isolates to cethromycin was higher than that of inducible MLSB (iMLSB) phenotype isolates in MRSA (P < 0.001) or MSSA (P = 0.036). The ermA, ermB and ermC genes was mainly found in ST239, ST59 and ST1 isolates in MRSA, respectively. Among the MSSA, the ermC gene was more detected in ST7, ST88 and ST120 isolates, but more ermB genes were detected in ST59 and ST398 isolates. The cMLSB phenotype was more common in ST239 and ST59 isolates of MRSA, and was more frequently detected in ST59, ST398, and ST120 isolates of MSSA.ConclusionCethromycin had strong antibacterial activity against S. aureus. The resistance of MRSA to cethromycin may had some clonal aggregation in ST239. The resistance of S. aureus carrying various erm genes or MLSB phenotypes to cethromycin was different.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.