Abstract

Botrytis cinerea is a phytopathogenic fungus that causes gray mold, a major postharvest disease of fruits and vegetables. Chemical fungicides remain the main solution to control Botrytis disease, but concerns have raised about their safety to environment and human health, and there is an increasing need for development of more effective and less toxic treatments. In this study the divalent cation chelating agent ethylenediaminetetraacetic acid (EDTA) exhibited marked antifungal activity against B. cinerea, including inhibition of spore germination, mycelial growth, infection cushion formation, stimulation of cell death, and impairment of fungal virulence. These adverse effects of EDTA could be reversed by the addition of calcium ion, implying that metal ion chelation is involved in the fungicidal mechanism. Bean leaf and tomato fruit protection assay indicated that EDTA treatment led to a significant reduction of infection by B. cinerea. Furthermore, the antifungal activity of EDTA was significantly enhanced when used in combination with fenhexamid. These findings suggest that EDTA could be a promising tool to control B. cinerea, and application of EDTA may reduce the use of conventional chemical fungicides.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call